بررسی و ارزیابی نانوحسگر زیستی فیبر نوری جهت شناسایی مواد زیستی...



 فصل اول

مبانی و کلیات

مقدمه

امروزه در زمینه‌های مختلفی از جمله پزشكي،صنايع شيميايي،صنايع غذايي،زيست محيطي وتوليدمحصولات دارويي- بهداشتي از حسگرهای زیستی[1] استفاده می‌شود. در محیط‌های کلینیکی و پزشکی، وجود ابزارهایی جهت تشخیص بیماری‌ها، امری بسیار ضروری می‌باشد. توسعه‌ی سیستم‌هایی که دارای بانک کاملی از مشخصات انواع بیماری‌‌ها بوده و محیطی آسان و مطلوب را جهت استفاده‌ی کاربران خود فراهم کنند، موضوعی است که محققان علوم مختلفی را همچون علم پزشکی و شاخه‌های علمی مرتبط، به سمت خود جذب نموده است. یکی از روش‌های معمول تشخیص بیماری، نمونه برداری می‌باشد که عمدتاً از طریق خون یا ادرار صورت می‌پذیرد. این روش دارای مشکلات متعددی نیز می‌باشد. محدودیت‌های دسترسی لحظه به لحظه به بیمار، طولانی بودن مدت تشخیص بیماری از روی نمونه‌ها، تغییر غلظت نمونه‌ها با گذشت زمان و قابل توجه بودن حجم نمونه‌ها از جمله‌ی این مشکلات می‌باشد. استفاده از روش‌های تشخیص سریع و یا ترکیبی از این روش‌ها که به کمترین حجم از نمونه‌ها نیاز داشته باشد، باعث کاهش زمان، هزینه و احتمال بروز خطا به هنگام تشخیص بیماری می‌گردد. یکی از راه‌های دست‌یابی به این هدف، استفاده از حسگرهای زیستی می‌باشد.

 حسگرها

حسگرها گونه‌ای مبدل هستند. بعضی از حسگرها به تنهایی قابل استفاده اند و برای خواندن آنهااحتیاجی به وسایل جانبی دیگری نیست، مانند دماسنج جیوه ای.دسته ی دیگر برای استفاده باید با وسایل دیگری همراه باشند مثل ترموکوپل.بیشتر حسگرها الکتریکی یا الکترونیکی هستند که انواع الکتریکی از دقت پایین تری برخوردارند. البته انواع دیگری نیز موجود است. حسگرها در زندگی روزمره ما به صورت فراوان مورد استفاده قرار می‌گیرند، مواردی که شامل خودرو، ماشین‌های صنعتی، تجهیزات فضائی و حتی دارویی می‌شود. پیشرفت فنی باعث شده تا انواع مختلف و گوناگونی از حسگرها با فناوری ام‌ای‌ام‌اس (MEMS) تولید شود. در اکثر موارد این کار باعث بدست آمدن حساسیت بالا شده است.

با به وجود آمدن راه‌های مختلف برای نمایش اثر انرژیها، حسگرها بر اساس انرژی مورد آزمون، که حسگر آن را دریافت می‌کند، طبقه بندی می‌شوند.

حسگرهای دمائی

دماسنج (thermometer)

ترموکوپل (thermocouple)

مقاومت‌های حساس به گرما (thermistors and resistance temperature detectors)

بولومتر (bolometer)

گرماسنج (calorimeter)

حسگرهای مقاومت الکتریکی

الکتروسکوپ (electroscope)

ولت‌سنج (voltmeter)

اما چرا از حسگرها استفاده می کنیم ؟ همانطور که در ابتدای این گفتار اشاره شد حسگرها اطلاعات مورد نیاز را در یافت و کمیتهای فیزیکی یا شیمیایی موردنظر را به سیگنالهای الکتریکی تبدیل می کنند.مزایای سیگنالهای الکتریکی را می توان بصورت زیر دسته بندی کرد:

– پردازش راحتتر و ارزانتر

– انتقال آسان

– دقت بالا

– سرعت بالا

– و...

حسگر های زیستی

حسگرها در پزشکي وبهداشت، صنايع شيميايي، صنايع دفاعي وصنعت خودرو کاربردهاي فراواني دارند. درقسمت قبل به شرح نانو حسگرها پرداختيم. دراين قسمت به معرفي حسگرهاي زيستي مي پردازيم.

ويژگي هاي مهم نانو حسگرها انتخاب گري بالاتر،حساسيت زيادتر،ابعاد کوچکتر وارزان تر هستند. نانوحسگرها به طور ذاتي کوچک‌تر و حساس‌تر از ساير حسگرها مي‌باشند. وهمان طور که گفتيم اين ظرفيت را دارند که قيمت تمام شده آنها کمتر از قيمت تمام‌شده حسگرهاي موجود در بازار باشد.

در بخش نظامي و امنيت ملي احتياج به حسگرهاي بسيار حساسي است که بتوانند به صورت گسترده توزيع شوند تا به کمک آنها بتوان تشعشعات و بيوسم‌هاي زيستي را مورد بررسي قرار داد. در زمينه پزشکي نياز به حسگرهاي بسيار حساسي به صورت آزمايشگاه‌هايي بر روي تراشه است كه بتوانند کوچک‌ترين علائم نشان‌دهنده سرطان را شناسايي کنند. در صنايع هوافضا احتياج به نانوحسگرهايي است که در بدنه هواپيماها به عنوان سيستم هشداردهنده ثابت قرار بگيرند و مشخص کنند که چه زماني هواپيما احتياج به تعميرات دارد.

در صنايع اتومبيل مي‌توان از نانوحسگرها براي مصرف بهينه سوخت استفاده کرد. همچنين در اتومبيل‌هاي گران‌قيمت مي‌توان براي بهبود وضعيت صندلي و وضعيت کنترل‌هاي موجود به تناسب حالت‌هاي مختلف بدن، اين نانوحسگرها را مورد استفاده قرار داد. در مرحله بعدي مي‌توان از آن در فناوري اطلاعات به منظور ترغيب در فراگيرشدن سيستم‌هاي محاسبه‌گر رايانه‌هاي همراه هميشه روشن استفاده کرد. همچنين مي‌توان آنرا به شکل توده حسگرها در تلفن‌هاي هوشمندي که براي ارتباطات ثابت بين ساير تلفن‌هاي هوشمند و رايانه‌هاي همراه از آنها استفاده مي‌شود، به کار برد!

اصول و کاربردهای حسگر هاي زيستي

حسگر زيستي يا بيوسنسور نامِ گروهي از حسگرها است. اين حسگرها به گونه‌اي طراحي مي‌شوند تا تنها با يک ماده‌ي خاص واکنش نشان دهند. نتيجه‌ي اين واکنش به صورتِ پيام‌هايي در مي‌آيد که يک ريزپردازنده، مي‌تواند آن‌ها را تحليل کند. اين حسگرها از سه بخش تشکيل شده‌اند.

پذيرنده‌ي زيستي يا بيورسپتور: يک عنصر زيستي (پادتنها، اسيد نوکلئيکها، آنزيم‌ها، سلول‌ها و ديگر ماده‌هايِ زيستي) که مي‌تواند به صورتِ انتخابي تنها با ماده‌ي خاصي واکنش نشان دهد.

بيورسپتور هايي که در حسگرهاي زيستي مورد استفاده قرار مي گيرند به شرح ذيل مي باشند:

1. آنزيم

2. آنتي بادي

3. گيرنده هاي سلولي

4. اسيدهاي نوکلئيک DNA يا RNA

5. ميکرو ارگانيسم يا سلول کامل

6. بافت

7. گيرنده هاي سنتتيک

آشکارساز و مبدل: که پس از واکنشِ ماده‌اي خاص با پذيرنده‌هايِ زيستي، وارد عمل مي‌شوند و مي‌توانند نوع و مقدارِ واکنش را با روش‌هايِ مختلفِ فيزيکي-شيمايي کرده (مثلاً با بررسيِ تغييرهايِ الکتروشيميايي، نوري، جرمي يا حرارتيِ قبل و بعد از واکنش) و به وسيله‌ي سيگنال‌هايِ مناسب به پردازنده ارسال کنند.

انواع متداول مبدل هاي مورد استفاده در بيوسنسورها شامل:

سنسورهای الکتروشيميايي

مبدل هاي الکتروشيميايي به سه دسته پتانسيومتري تقسيم مي شوند (اين روش مبتني بر اندازه گيري پتانسيل يک پيل در جريان صفر است). اين پتانسيل با لگاريتم غلظت ماده مورد سنجش متناسب است، (ولتامتري) يک پتانسيل به پيل اعمال مي شود تا اکسايش (يا کاهش) ماده مورد سنجش اتفاق افتد و يک افزايش يا کاهش در جريان پيل ايجاد شود. اين روش به آمپرمتري معروف است و رسانايي سنجي محلول هاي حاوي يون هادي الکترون هستند. بزرگي اين رسانايي در اثر واکنش شيميايي تغيير مي يابد.رابطه بين رسانايي و غلظت به طبيعت واکنش وابسته است.

سنسور های نوري( لومينسانس، جذب و تشديد پلاسمون سطح )

روش هاي مورد استفاده در بيوسنسورهاي نوري شامل طيف سنجي جذب، طيف سنجي فلورسانس، طيف سنجي انعکاس داخلي، پراش نور است.

این سنسورها دارای دو نوع حساس به تغيير جرم و حرارتي مي باشند.

تمام فرايندهاي شيميايي با توليد يا جذب انرژي همراه هستند. اين حرارت را مي توان با يک ترميستور حساس اندازه گيري کرد و آن را به ميزان واکنش نسبت داد.

پردازنده هاي سيگنال که عمدتا مسئول براي نمايش نتايج و انجام محاسبات حسگر هستند.

حسگرهاي زيستي طي سالهاي اخير مورد توجه بسياري از مراکز تحقيقاتي قرار گرفته است. حسگرهاي زيستي يا سنسورهاي بر پايه مواد بيولوژيکي اکنون گستره ي وسيعي از کاربردها نظير صنايع دارويي، صنايع خوراکي، علوم محيطي، صنايع نظامي بخصوص شاخه Biowar و ... را شامل مي شود.

به طور کلي ميتوان گفت حسگر هاي زيستي يک گروه از سيستمهاي اندازه گيري مي باشند و طراحي آنها بر مبناي شناسايي انتخابي آناليتها بر اساس اجزا بيولوژيک وآشکارسازهاي فيزيکي و شيميايي صورت مي پذيرد

از آنجا که حسگر هاي زيستي ابزاري توانمند جهت شناسايي مولکول هاي زيستي مي باشند، امروزه از آنها در علوم مختلف پزشکي، صنايع شيميايي، صنايع غذايي، مانيتورينگ محيط زيست، توليد محصولات دارويي، بهداشتي و غيره بهره مي گيرند.در واقع اين حسگرها ابزاري توانمند جهت شناسايي مولکولهاي زيستي مي باشند. حواس بويايي و چشايي انسان که به شناسايي بوها و طعمهاي مختلف مي پردازد و يا سيستم ايمني بدن که ميليونها نوع مولکول مختلف را شناسايي مي کند، نمونه هايي از حسگرهاي زيستي طبيعي مي باشند. بيشترين کاربرد حسگرهاي زيستي در تشخيص هاي پزشکي و علوم آزمايشگاهي است، در حال حاضر بيوسنسور هاي گلوکز از موفق ترين بيوسنسور هاي موجود در بازار بوده که براي اندازه گيري غلظت گلوکز خون بيماران ديابتي استفاده مي شود.

در پانکراس بيماران ديابتي به ميزان کافي انسولين توليد نمي‌شود. در اين گونه موارد براي تنظيم مصرف انسولين، سنجش مداوم ميزان گلوکز خون ضروري است. اين ابزار به بيماران مبتلا به ديابت کمک مي کند تا در طول روز به سنجش سطح گلوکز خون خود پرداخته و در زمان هاي مورد نياز انسولين تزريق کنند.

کاربردهاي مختلفي براي حسگرهاي زيستي در پزشکي و بالين متصور است که در ذيل اشاره مي شود:

**تشخيص ودرمان بيماريها ( سرطان، ديابت و ......)

** تشخيص بيماريها در سطح ژن( سرطان، ديابت و ......)

**تشخيص عوامل بيماريزا

**اندازه گيري داروها و متابوليتهاي آنها، کشف داروهاي جديد و ارزيابي فعاليت آنها

** ارزيابي و اندازه گيري آناليتها ي موجود در نمونه بيولوژيک

** تشخيص سريع بيماريها با استفاده از تستهاي سريع يا Point-of- care ، ويژگي اين تستها سرعت و ارزان بودن روش آزمايش است.

نانوحسگرهاي زيستي

با ورود علوم و فناوري نانو و فراهم شدن امكان ساخت الكترودهايي در مقياس بسيار كوچك، ساخت حسگرهاي نانومتري نيز ميسر شد. اين حسگرها به لحاظ دارا بودن سايز نانومتري و كاربردشان در محيط هاي زيستي، نانوبيوسنسور (نانوحسگر زيستي) نامگذاري شدند. نانوحسگرهاي زيستي الكترودهاي بسيار كوچكي در اندازهء نانومتري و ابعاد سلولي هستند كه از طريق تثبيت آنزيم هاي خاصي روي سطح آنها، نسبت به تشخيص گونه هاي شيميايي يا بيولوژيك مورد نظر در سلول ها حساس شده اند. از اين حسگرها براي آشكارسازي و تعيين مقدار گونه ها در سيستم هاي بيولوژيك استفاده مي شود. اين تكنيك، روش بسيار مفيدي در تشخيص عبور بعضي ملكول ها از ديواره يا غشاي سلولي است.

در طي دههء گذشته، با پيشرفت فناوري ساخت فيبر نوري و ساخت نانوفيبرها، در پژوهش هاي پزشكي و بيولوژيك نيز تحول عظيمي صورت گرفته و فناوري ساخت حسگرهاي زيستي و دانش توليد نانومتريِ اين ابزارها روزبه روز گسترش يافته است. اين حسگرها به لحاظ استفاده از فيبر نوري در ساختارشان «حسگرهاي نوري» ناميده شده اند و به دو دستهء شيميايي و بيولوژيكي تقسيم مي شوند. بسته به اينكه بخواهيم اين حسگر را براي تجزيهء گونهء داخل سلول، مايع بيولوژيك بين سلولي يا داخل خون به كار ببريم، ابعاد نوك حسگر، زاويهء مخروطي شدن نوك آن و ميزان نرمي پوشش روي فيبر متفاوت خواهد بود.

توليد نانوحسگرهاي زيستي نوري

براي تهيهء اين فيبر به عنوان نوك حسگر، مي توانيم از دستگاه هاي مورد استفاده براي كشش فيبرهاي نوري استفاده نماييم.

در اين دستگاه از ليزر دي اكسيد كربن براي گرم كردن فيبر و از وسيله اي براي كشش فيبر در جهت محور اصلي آن استفاده مي شود. محققان موفق شده اند با تغيير دما و ميزان نيروي كششيِ اعمال شده به فيبر، نوك هايي براي حسگرهاي زيستي بسازند كه قطرشان بين 20 تا 500 نانومتر است. اين تكنيك سرعت بالا (حدود 3 ثانيه) و روند توليد نسبتاً ساده اي دارد.

حسگرهای زیستی انواع مختلفی دارند اما مستقل از نوعشان همگی دارای سازو کاری مشترک اند. هر حسگر زیستی شامل دو بخش اصلی است: ۱/ عنصر تشخیص دهنده (recognition element) که برقراری پیوند شیمیایی با هدف را توسط ligand میسر می‌سازد، ۲/ انتقال دهنده (transducer) که وظیفه تبدیل سیگنال‌ها را بر عهده دارد.

حسگرهای زیستی به دو دسته مستقیم و غیر مستقیم تقسیم می‌شوند. در حسگرهای زیستی مستقیم هدف بدون هیچ واسطه‌ای با لیگاند پیوند برقرار کرده و شناسایی می‌شود. اما در حسگر غیرمستقیم این کار توسط یک عنصر واسطه انجام می‌گیرد.

در انتخاب حسگر مناسب باید دقت داشت که سرعت و سادگی حسگرهای مستقیم نسبت به غیرمستقیم بیشتر بوده و هم چنین قابلیت استفاده در حالت غیر مستقیم را نیز دارد و می توان برای اندازه گیری تغییرات فیزیکی (خواص اپتیکی، الکتریکی و شیمیایی) از آن استفاده کرد.

 حسگرهای زیستی به دو دسته اپتیکی و مکانیکی تقسیم می‌شوند که از انواع اپتیکی می توان به SPR(Surface Plasmon Resonator), LSPR, … اشاره کرد که به شکل‌های فیبری (tip & taper) وجود دارند و مورد بحث ما هستند. از انواع مکانیکی نیز می توان از MEMS, quartz plasmon resonator یاد کرد، که در ابعاد نانو کاربردهای بسیار زیادی دارند.

این حسگرها از سه بخش تشکیل شده‌اند.

1.پذیرندهی زیستی یا عنصرِ زیستیِ حساس: یک مادهٔ زیستی (پادتن‌ها، اسید نوکلئیکها، آنزیم‌ها، سلول‌ها و دیگر ماده‌هایِ زیستی) که می‌تواند به صورتِ انتخابی تنها با مادهٔ خاصی واکنش نشان دهد.

2.آشکارساز و مبدل: که پس از واکنشِ ماده‌ای خاص با پذیرنده‌هایِ زیستی، وارد عمل می‌شوند و می‌توانند نوع و مقدارِ واکنش را با روش‌هایِ مختلفِ فیزیکی-شیمایی کرده (مثلاً با بررسیِ تغییرهایِ الکتروشیمیایی، نوری، جرمی یا حرارتیِ قبل و بعد از واکنش) و به وسیلهٔ سیگنال‌هایِ مناسب به پردازنده ارسال کنند.

بخشِ پردازنده که همچنین مسئولیتِ نمایشِ نتیجهٔ فعالیتِ حسگر را نیز بر عهده دارد. به طور کلی می‌توان گفت حسگر زیستیها (زیست حسگرها) یک گروه از سیستمهای اندازه گیری می‌باشند و طراحی آنها بر مبنای شناسایی انتخابی آنالیتها بر اساس اجزا بیولوژیک وآشکارسازهای فیزیکو شیمیایی صورت می‌پذیرد. حسگرهای زیستی متشکل از سه جزء عنصر بیولوژیکی، آشکار ساز و مبدل می‌باشند. طراحی حسگرهای زیستی در زمینه‌های مختلف علوم بیولوژی، پزشکی در دو دهه گذشته گسترش چشمگیری داشته‌است.

فناوری حسگر زیستی در حقیقت نشان دهنده ترکیبی از علوم بیوشیمی، بیولوژی مولکولی، شیمی، فیزیک، الکترونیک و کامپیوتراست. یک حسگر زیستی در حقیقت شامل یک حسگر کوچک و ماده بیولوژیک تثبیت شده بر آن می‌باشد. از آنجا که حسگرهای زیستی ابزاری توانمند جهت شناسایی مولکول‌های زیستی می‌باشند، امروزه از آنها در علوم مختلف پزشکی، صنایع شیمیایی، صنایع غذایی، مانیتورینگ محیط زیست، تولید محصولات دارویی، بهداشتی و غیره بهره می‌گیرند. در واقع این حسگرها ابزاری توانمند جهت شناسایی مولکولهای زیستی می‌باشند.

حواس بویایی و چشایی انسان که به شناسایی بوها و طعمهای مختلف می‌پردازد و یا سیستم ایمنی بدن که میلیونها نوع مولکول مختلف را شناسایی می‌کند، نمونه‌هایی از حسگرهای زیستی طبیعی می‌باشند. در حقیقت حسگرهای زیستی ابزارهای آنالیتیکی بشمار می‌روند که می‌توانند با بهره گیری از هوشمندی مواد بیولوژیک، ترکیب یا ترکیباتی را شناسایی نموده، با آنها واکنش دهند. و بدین ترتیب یک پیام شیمیایی، نوری و یا الکتریکی ایجاد نمایند. بیشترین کاربرد حسگرهای زیستی در تشخیص‌های پزشکی و علوم آزمایشگاهی است، در حال حاضر حسگرهای زیستی گلوکز از موفق ترین حسگرهای زیستیی موجود در بازار بوده که برای اندازه گیری غلظت گلوکز خون بیماران دیابتی استفاده می‌شود. همانگونه که ذکر گردید، اساس کار یک حسگر زیستی تبدیل پاسخ بیولوژیکی به یک پیام است. حسگرهای زیستی مرکب از سه بخش ۱)دریافتگر زیستی یا بیورسپتور ۲) آشکارساز و ۳) مبدل می‌باشند.

دریافتگرهای زیستی که در حسگرهای زیستی مورد استفاده قرار می‌گیرند به شرح ذیل می‌باشند:

۱. آنزیم

۲. پادتن

۳. گیرنده‌های سلولی

۴. اسیدهای نوکلئیک DNA یا RNA

۵. میکروارگانیسم یا سلول کامل

۶. بافت

۷. گیرنده‌های سنتتیک

در این سیستمها اندازه گیری تغییرات فیزیکی وشیمیایی انجام شده در سطح بیورسپتور و تبدیل آن به انرژی قابل اندازه گیری توسط مبدل انجام می‌شود. همچنین هدایت سیگنالهای فرستاده شده از مبدل به پرداشگر، تقویت، آنالیز و در نهایت تبدیل آن به واحد غلظت توسط آشکار ساز انجام می‌گیرد. انواع متداول مبدل‌های مورد استفاده در حسگر زیستیها شامل:

۱) الکتروشیمیایی ۲) نوری (تابناکی، جذب و تشدید پلاسمون سطح) ۳) حساس به تغییر جرم و ۴) حرارتی می‌باشند.

به عبارتی دیگر یک حسگر زیستی به طور کلی شامل یک سیستم بیولوژیکی تثبیت شده می‌باشد که در حضور آنالیت مورد اندازه گیری باعث تغییر خواص محیط اطراف می‌شود. وسیله اندازه گیری که به این تغییرات حساس است، سیگنالی متناسب با میزان و یا نوع تغییرات تولید می‌نماید که متعاقباً به سیگنالی قابل فهم برای دستگاههای الکترونیکی تبدیل می‌گردد. اختصاصیت و قدرت شناسایی یک آنالیت از میان دیگر آنالیتهای موجود در نمونه مورد آزمایش از ویژگی‌های یک حسگر زیستی می‌باشد. قابلیت انتخاب یک حسگر زیستی توسط بخش پذیرنده و مبدل آن تعیین می‌شود. بدین ترتیب مزایای حسگرهای زیستی بر سایر سامانه‌های اندازه‌گیری موجود را می توان در ۳ مورد زیر خلاصه نمود:

سیستم‌های اندازه گیری موجود توانایی سنجش مولکولهای غیرقطبیی که در بافتهای حیاتی تشکیل می‌گردند را ندارند در حالی که حسگر زیستیها می‌توانند این ترکیبات را شناسایی و سنجش کنند.

از آنجایی که مبنای کار حسگرهای زیستی بر اساس سامانه بیولوژیکی تثبیت و تعبیه شده در خود آنهاست، بنابراین آنها اثرات جانبی بر سایر بافتها ندارند.

کنترل پیوسته و بسیار سریع فعالیتهای متابولیسمی توسط این حسگرها امکان پذیر است.

حسگرهای زیستی بر اساس نحوه شناسایی آنالیت به دو گروه عمده تقسیم می‌گردند:

 ۱. حسگر زیستی با اساس شناسایی مستقیم پادگن (آنتی‌ژن): که واکنش پذیرنده با آنالیت مستقیما توسط حسگر شناسایی می‌گردد. عناصر بیولوژیک مورد استفاده در این گروه، گیرنده‌های سلولی و آنتی بادی‌ها می‌باشند.

۲. حسگر زیستی با اساس شناسایی غیر مستقیم پادگن: واکنش پذیرنده با آنالیت به طور غیر مستقیم توسط حسگر شناسایی می‌گردد. عناصر بیولوژیک مورد استفاده در این گروه ترکیبات نشاندار، مثل آنتی بادیها ی نشاندار شده و یا ترکیباتی با خاصیت کاتالیتیکی مانند آنزیم‌ها می‌باشند. توسعه حسگر زیستیها ازسال ۱۹۶۲ با ساخت الکترود اکسیژن توسط لی لند کلارک در سین سیناتی آمریکا برای اندازه گیری غلظت اکسیژن حل شده در خون آغاز شد. این حسگر همچنین بنام سازندهٔ آن گاهی الکترود کلارک نیز خوانده می‌شود. بعداً با پوشاندن سطح الکترود با آنزیمی که به اکسیده شدن گلوکز کمک می‌کرد از این حسگر برای اندازه گیری قند خون استفاده شد. بطور مشابه با پوشاندن الکترود توسط آنزیمی که قابلیت تبدیل اوره به کربنات آمونیوم را داراست در کنار الکترودی از جنس یون NH4 + زیست‌حسگری ساخته شده که می‌توانست میزان اوره در خون یا ادرار را اندازه گیری کند. این دو حسگر زیستی از مبدل‌های متفاوتی در بخش تبدیل سیگنال خویش استفاده می‌کردند. بطوریکه در نوع اول میزان قند خون با اندازه گیری جریان الکتریکی تولید شده اندازه گیری می‌شد (آمپرسنجانه=آمپرومتریک). و درنوع دوم اندازه گیری غلظت اوره بر اساس میزان بار الکتریکی ایجاد شده در الکترودها صورت می‌پذیرفت (پتانسیل‌سنجانه=پتانسیومتریک).

ویژگی‌های حسگرهای زیستی عناصر بیولوژیکی

همانطور که ذکر گردید حسگرهای زیستی سیستمهای اندازه گیری بسیار دقیق، حساس و اختصاصی می‌باشند و وجود بیورسپتورهای خاص علت ویژگیهای منحصر به فرد این سیستمهای اندازه گیری می‌باشد. در حقیقت اساس شناسایی وسنجش ترکیبات در این سیستمها، اتصال ویژه آنالیت مورد اندازه گیری به حسگر توسط بیورسپتورها می‌باشد. اهمیت این اجزا در عملکرد بسیار اختصاصی آنها نسبت به آنالیت خاصی است که بدین وسیله از مداخلهٔ مواد مزاحم که موجب عدم کارایی بسیاری از روشهای اندازه گیری است، جلوگیری می‌کند. جزء بیولوژیک ممکن است واکنش سوبسترا را کاتالیز کند(آنزیم) یا به طور انتخابی به سوبسترا متصل شود. آنزیم‌ها یکی از متداولترین عناصر بیولوژیکی هستند که در این سیستمها مورد استفاده قرار می‌گیرند. عناصر بیولوژیکی عامل اصلی گزینش در زیست‌حسگر محسوب می‌شوند که عمدتا در سه گروه تقسیم بندی میگردندکه به شرح زیر می‌باشد:

 پادتن

آنزیم

اسید نوکلئیک

 ساختارهای سلولی/ سلول‌ها

روش‌های تثبیت اجزای زیستی:به منظور ساخت یک حسگر زیستی پایدار، باید جزء بیولوژیکی به طرز خاصی به مبدل‌ها متصل گردد، چنین فرآیندی را تثبیت گویند. برای این منظور پنج روش به شرح زیر ارائه شده‌است:

جذب سطحی

ریزپوشینه‌سازی

محبوس‌سازی

پیوند عرضی

پیوند کووالانسی

مبدل:، تغییر قابل مشاهده فیزیکی یا شیمیایی را به یک پیغام قابل اندازه گیری، که بزرگی آن متناسب با غلظت ماده یا گروهی از مواد مورد سنجش است، تبدیل می‌نماید، چنین عملی ازتلفیق دو فرایند متفاوت حاصل می‌شود؛ این وسیله ویژگی و حساسیت مواد بیولوژیکی را با قدرت محاسبه گری ریزپردازشگر ترکیب می‌نماید. بیشتر حسگر زیستیها از مبدل‌های الکتروشیمیایی ساخته شده‌اند. مبدل‌ها را می‌توان به انواع زیر تقسیم بندی نمود:

مبدل‌های نوری

مبدل‌های الکتروشیمیایی

مبدل‌های پیزوالکتریک

مبدل‌های گرمایی

حسگر زیستی سیستمی با اندازه کوچک، حساسیت بالا وقابل حمل بوده که می‌تواند آنالیت مورد نظررا درغلظتهای بسیار کم در نمونه‌های بیولوژیک اندازه گیری کند. دو عامل در طراحی یک حسگر زیستی مناسب نقش ایفا می‌کند:

1-روش مناسب تثبیت دریافتگر زیستی در سطح جامد که موجب افزایش طول عمر، حساسیت و پایداری آن می‌گردد.

2-انتخاب مبدل مناسب.

استفاده از حسگرهای زیستی به دلیل دقت و حساسیت روش‌و همچنین در مواردی به دلیل عدم نیاز به وسایل پیشرفته و صرف زمان و هزینه زیاد برای تشخیص آنالیت‌ها در مراکز کوچک و در مراکز با امکانات کم و حتی در منزل نیز کاربرد دارد. این روشها می‌توانند در شناخت مکانیسم برخی بیماریها و اختلالات، در امر تشخیص و درمان بیماریها و عوارض آنها و شناسایی علل و زمینه‌های به وجود آورنده آنها و نیز در سایر علوم مرتبط نظیر داروسازی، سامانه‌های پیشرفته دارورسانی و شناسایی داروهای جدید و ارزیابی فعالیت بیولوژیک آنها فعالیّت نماید.

جزئیات فنی حسگر اپتیکی تشدیدگر پلاسمون سطح:حسگر تشدید پلاسمون سطح (SPR)‌مناسب‌ترین ابزار برای تحلیل برهمکنش‌های انواع مختلفی از مولکولهاست. ساده ترین و متداول ترین این برهم‌کنش‌ها، برهم‌کنش پادتن-پادگن است.

این سامانه‌ها بر اساس آشکارسازی مدولاسیون مکانی فاز (SMPD) است. در این سیستم نور تکفام موازی به منظور برانگیختن SPR استفاده می‌شود و فاز نور بازتابی به صورت مکانی مدوله شده تا یک طرح تداخلی ایجاد کند. در روابط پرتوهای تداخلی φ اختلاف فاز بین پرتوها، I شدت پرتوها، و f فرکانس فضایی خطوط تداخلی است.

نمونه‌های تجاری امروزی این نوع حسگرها بر اساس شدت آشکارسازی نور کار می‌کنند که بسیار مکانیزم ساده‌ای دارد، اما خطاهای موجود در منبع نوری، آشکار ساز نور و تقویت کننده موجب کاهش دقت حسگر شده و بیشتر از چیزی در حدود 10^-6 (RIU) نخواهد بود. به منظور افزایش دقت حسگر به جای اندازه گیری شدت، تغییرات فازی را اندازه گیری می‌کنند. همچنین برانگیختن حسگر باعث افزایش سرعت تغییر شدت و فاز می‌گردد.(دقت: 10^-4 (RIU))

اجزای SPR

لیزر He-Ne، 632.8nm ۲. دریچه ۱۰ میکرومتری(واقع در فاصله کانونی لنزها)، آلمینیومی ۳. بسط دهندهٔ پرتو ۴. صفحه موج ½ ۵. دیافراگم مثلثی ۶. منشور متساوی الاضلاع کریشمان (شیشه ZF5، ضریب شکست 1.740) ۷. تراشه حسگر ۸. سلول جریان ۹. منشور ولاتسون (زاویه جدایی.۳ درجه) ۱۰. منشور قطبنده ۱۱. لنز تصویرساز ۱۲. دوربین CCD متصل به رایانه ۱۳. رایانه

اساس کار حسگرهای اپتیکی بر پایه تغییر ضریب شکست نور در مرز منشور(فیبر) که در تماس با لیگاند است می‌باشد. به منظور افزایش جذب انرژی نور و دقت بیشتر یک لایه فلز (معمولا طلا) بر روی سطح منشور (فیبر) استفاده می‌کنند. حسگر فیبری SPR:در حسگر فیبری به جای استفاده از منشور از فیبر استفاده می‌شود. مزیت این نوع حسگر اندازه کوچک آن است. عملکرد فیبر نیز به همان شکل تغییر در ضریب شکست و فاز پرتوی بازگشتی است. در این شکل فیبر از قسمت نازک تر در تماس محلول مورد بررسی قرار گرفته، نور عبوری از فیبر (که دائما در حال بازتاب داخلی در فیبر است) در اثر وجود ویروس مورد نظر در محلول و قرار گرفتن بر روی لیگاند، دچار تغییر ضریب شکست شده و پرتو خروجی تغییر فاز نشان می‌دهد. با اندازه گیری شیفت در طول موج نور خروجی، به میزان غلظت ویروس و یا وجود یا عدم وجود ویروس پی می‌بریم. همچنین در قسمت زیرین فیبر از یک کره استفاده شده که باعث رفت و برگشت بیشتر نور و در نتیجه تقویت پرت می‌گردد.

برای ساختن تیپ فیبر را به مدت حدودا ۴۵ دقیقه در 1400ml اسید HF %48 به همراه 800 ml روغن قرار داده و سپس توسط NaOH اسید را خنثی و تیپ را می‌شویند. هرچه تیپ متقارن تر باشد پرتوی خروجی از آن دارای شکل متقارن تری است و در اندازه گیری دقت بیشتری به دست می‌دهد.

کاربردهای SPR

بررسی DNA به منظور کشف هرگونه نقص ژنتیکی و یا ابتلا به سرطان‌ها در بدو تولد.

در این روش با مقایسه طیف DNA با طیف ناشی از DNA دارای نقص در ترتیب که منجر به ایجاد سرطان می‌شود، از بدو تولد می‌توان از ابتلا به سرطان و یا سایر بیماریهای ژنتیکی اطلاع یافت.

به دست آوردن غلظت محلولی (گلوکز خون):

در این روش مخصوصا با تلفیقی از MEMSاز کپسول‌هایی استفاده می‌شود که با کاشت در بدن می‌توانند اطلاعات مربوط به بیمار را به طور لحظه‌ای به رایانه شخصی وی ارسال کنند.

حسگرهای زیستی نانومکانیکی

اگر چه استفاده از حسگرها قدمت زیادی دارد، اما در سال های اخیر نانوفناوری نقش مهم و فزاینده ای در توسعه آنها ایفا کرده است. نانوحسگرهایی که بخش اصلی حسگر در آنها ماهیت زیستی داشته باشند، با اسم نانوحسگر زیستی(Nano-biosensor) شناخته می شوند. نانوحسگرهای زیستی به دلیل دارا بودن اندازه نانومتری می توانند سنجش در محیط های زیستی را آسانتر، حساس تر و سریعتر انجام دهند.

حسگرهای زیستی ابزارهای تجزیه ای هستند که دارای سه جزء اصلی عنصر زیستی، مبدل و سیستم قرائت می باشند. عضو زیستی از گزینش‌پذیری بالایی برای برهم کنش زیستی و آشکارسازی آنالیت (ماده مورد تجزیه) برخوردار است. مبدل فیزیکی (Transducer) پدیده شناسایی را به یک اثر قابل اندازه گیری مانند سیگنال الکتریکی، نشر نوری یا حرکت مکانیکی تبدیل می کند. این اثر در نهایت توسط سیستم قرائت اندازه گیری می شود. نانوکانتیلورها و میکروکانتیلورها می توانند تعدادی از پدیده ها نظیر تغییرات جرم، دما، گرما، فشار و رطوبت را به انحراف (شیوه استاتیک) یا تغییر در فرکانس رزونانسی (شیوه دینامیک) تبدیل کنند. کانتیلورها در ساختمان زیست حسگرها بعنوان مبدل سیگنال شیمیایی به حرکت مکانیکی با حساسیت بالا بکار می روند. کلید استفاده از میکروکانتیلورها برای آشکارسازی گزینشی مولکول ها قدرت عاملدار کردن سطح کانیتلور است.

میکروکانیتلورها در آشکارسازی مواد شیمیایی مانند ترکیبات فرار، مواد منفجره، گونه های یونی، سموم، آلاینده های غذا و محیط، آفت کش ها و مواد زیستی مانند آشکارسازی DNA و پروتئین و گلوکز و ... بکار می روند.

نانوساختارهای مختلفی در ساخت نانوحسگرهای زیستی استفاده می شوند که بعضی از آنها عبارتند از: نانوذرات، نقاط کوانتومی، نانولوله ها، نانوفیبرها و نانو سیم ها.

اجزای اصلی زیست حسگر

حسگرهای زیستی ابرازهای تجزیه ای هستند که دارای سه جزء اصلی عنصر زیستی(به عنوان جزء اصلی تشخیص دهنده یونها یا مولکولهای هدف)، مبدل (Transducer) و سیستم قرائت(Read out System) می باشند. در حسگرهای زیستی، عضو زیستی با روش های مختلف روی مبدل تثبیت(Immobilize) شده است . این عضو زیستی از گزینش پذیری بالایی برای برهم کنش های زیستی و آشکارسازی آنالیت برخوردار است (در سیستم های زیستی بین گیرنده و لیگاند مربوط به آن ارتباط اختصاصی وجود دارد که نمونه جالب آن رابطه کاملا اختصاصی بین آنزیم و پیش‌ماده (Substrate) آن می باشد. بدین معنا که آنزیم فقط پیش‌ماده خاص خود را می پذیرد و واکنش موردنظر را تنها بر روی پیش‌ماده ویژه کاتالیز می کند. این ویژگی از تطابق ساختار جایگاه فعال آنزیم (Active site) با ساختار پیش‌ماده ناشی می شود. مبدل فیزیکی پدیده شناسایی را به یک اثر قابل اندازه گیری مانند سیگنال الکتریکی، نشر نوری یا حرکت مکانیکی تبدیل می کند. این اثر در نهایت توسط سیستم قرائت اندازه گیری می شود.

معمولترین عضو زیستی در زیست حسگرها آنزیم ها، آنتی بادی ها، اندامک ها، گیرنده ها و اسیدهای نوکلئیک هستند که با اتصال ویژه به آنالیت موردنظر امکان تجزیه کمی و کیفی آن را فراهم می آورند.

مبدل های معمول در ساخت زیست حسگرها شامل انواع نوری، الکتروشیمیایی، ترمومتری، پیزوالکتریک و ... می باشند که به ترتیب سیگنال ایجاد شده را به علایم نوری،الکترونیکی، تغییرات گرمایی و نوسانی تبدیل می کنند.

این حسگرها بر مبنای نوع جزء زیستی، نحوه کار مبدل یا کاربرد آنها تقسیم بندی می شوند .

امتیازات و عوامل پیشرفت زیست حسگر ها

در اوایل 1960 کلارک و لایونز و آپدایک و هیکز اولین زیست حسگرها را بر مبنای برهمکنش کاتالیتیکی ویژه آنزیم گلوکز اکسیداز با گلوکز توسعه دادند. بعد از آن رشد سریعی در مطالعه فعالیت ها در این زمینه اتفاق افتاد که باعث پیشرفت بزرگی در توسعه ابزارهای حسگر برای اندازه گیری مولکول های زیستی در زمینه های مختلف صنعتی، دارویی، بالینی و کنترل های محیطی گردید.

پیشرفت در میکروفناوری و نانوفناوری پیشرفت حسگرهای بسیار حساس (با توانایی آشکارسازی خمیدگی های در حد نانومتر)، با امتیاز کوچک بودن (امکان سنجش آسانتر محیط های زیستی) را منجر شد. توانمندی بالا، قابلیت اطمینان، صرف انرژی کم، صرفه جویی در زمان و قیمت و آنالیت از مزایای استفاده از این نانو زیست حسگرهاست. سهولت و سرعت بالای اندازه گیری، تکرارپذیری، عملکرد اختصاصی، قابلیت حمل، امکان ساخت آرایه های چند عنصری برای اندازه گیری همزمان و قرائت چندین نمونه، حساسیت بالا و امکان جمع شدن با فناوری میکروالکترونیک از دیگر مزایا می‌باشند. این روش آشکارسازی نیاز به نشاندار کردن (Labeling) ندارد.

[1]Biosensors


خرید و دانلود بررسی و ارزیابی نانوحسگر زیستی فیبر نوری جهت شناسایی مواد زیستی...

افزایش فالوور اینستاگرام